Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Trends Plant Sci ; 28(10): 1098-1100, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37574427

RESUMEN

In 1998, Bill Gray and colleagues showed that warm temperatures trigger arabidopsis hypocotyl elongation in an auxin-dependent manner. This laid the foundation for a vibrant research discipline. With several active members of the 'thermomorphogenesis' community, we here reflect on 25 years of elevated ambient temperature research and look to the future.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Temperatura , Hipocótilo/metabolismo , Ácidos Indolacéticos
2.
Plant Direct ; 7(7): e509, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37435612

RESUMEN

Molecular genetic analyses in the model species Arabidopsis thaliana have demonstrated the major roles of different CALMODULIN-BINDING PROTEIN 60 (CBP60) proteins in growth, stress signaling, and immune responses. Prominently, CBP60g and SARD1 are paralogous CBP60 transcription factors that regulate numerous components of the immune system, such as cell surface and intracellular immune receptors, MAP kinases, WRKY transcription factors, and biosynthetic enzymes for immunity-activating metabolites salicylic acid (SA) and N-hydroxypipecolic acid (NHP). However, their function, regulation, and diversification in most species remain unclear. Here, we have created CBP60-DB (https://cbp60db.wlu.ca/), a structural and bioinformatic database that comprehensively characterized 1052 CBP60 gene homologs (encoding 2376 unique transcripts and 1996 unique proteins) across 62 phylogenetically diverse genomes in the plant kingdom. We have employed deep learning-predicted structural analyses using AlphaFold2 and then generated dedicated web pages for all plant CBP60 proteins. Importantly, we have generated a novel clustering visualization algorithm to interrogate kingdom-wide structural similarities for more efficient inference of conserved functions across various plant taxa. Because well-characterized CBP60 proteins in Arabidopsis are known to be transcription factors with putative calmodulin-binding domains, we have integrated external bioinformatic resources to analyze protein domains and motifs. Collectively, we present a plant kingdom-wide identification of this important protein family in a user-friendly AlphaFold-anchored database, representing a novel and significant resource for the broader plant biology community.

3.
Funct Integr Genomics ; 23(3): 236, 2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37439880

RESUMEN

Cellular signaling generates calcium (Ca2+) ions, which are ubiquitous secondary messengers decoded by calcium-dependent protein kinases, calcineurins, calreticulin, calmodulins (CAMs), and CAM-binding proteins. Previous studies in the model plant Arabidopsis thaliana have shown the critical roles of the CAM-BINDING PROTEIN 60 (CBP60) protein family in plant growth, stress responses, and immunity. Certain CBP60 factors can regulate plant immune responses, like pattern-triggered immunity, effector-triggered immunity, and synthesis of major plant immune-activating metabolites salicylic acid (SA) and N-hydroxypipecolic acid (NHP). Although homologous CBP60 sequences have been identified in the plant kingdom, their function and regulation in most species remain unclear. In this paper, we specifically characterized 11 members of the CBP60 family in the agriculturally important crop tomato (Solanum lycopersicum). Protein sequence analyses revealed that three CBP60 homologs have the closest amino acid identity to Arabidopsis CBP60g and SARD1, master transcription factors involved in plant immunity. Strikingly, AlphaFold deep learning-assisted prediction of protein structures highlighted close structural similarity between these tomato and Arabidopsis CBP60 homologs. Conserved domain analyses revealed that they possess CAM-binding domains and DNA-binding domains, reflecting their potential involvement in linking Ca2+ signaling and transcriptional regulation in tomato plants. In terms of their gene expression profiles under biotic (Pseudomonas syringae pv. tomato DC3000 pathogen infection) and/or abiotic stress (warming temperatures), five tomato CBP60 genes were pathogen-responsive and temperature-sensitive, reminiscent of Arabidopsis CBP60g and SARD1. Overall, we present a genome-wide identification of the CBP60 gene/protein family in tomato plants, and we provide evidence on their regulation and potential function as Ca2+-sensing transcriptional regulators.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Solanum lycopersicum , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción/genética , Solanum lycopersicum/genética , Calcio/metabolismo , Inmunidad de la Planta/genética , Calmodulina/genética , Calmodulina/metabolismo , Proteínas de Unión a Calmodulina/genética , Proteínas de Unión a Calmodulina/metabolismo , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/genética , Ácido Salicílico/metabolismo
4.
Trends Biochem Sci ; 48(8): 699-712, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37258325

RESUMEN

Salicylic acid (SA) is a central plant hormone mediating immunity, growth, and development. Recently, studies have highlighted the sensitivity of the SA pathway to changing climatic factors and the plant microbiome. Here we summarize organizing principles and themes in the regulation of SA biosynthesis, signaling, and metabolism by changing abiotic/biotic environments, focusing on molecular nodes governing SA pathway vulnerability or resilience. We especially highlight advances in the thermosensitive mechanisms underpinning SA-mediated immunity, including differential regulation of key transcription factors (e.g., CAMTAs, CBP60g, SARD1, bHLH059), selective protein-protein interactions of the SA receptor NPR1, and dynamic phase separation of the recently identified GBPL3 biomolecular condensates. Together, these nodes form a biochemical paradigm for how the external environment impinges on the SA pathway.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácido Salicílico/metabolismo , Factores de Transcripción/metabolismo , Hormonas/metabolismo
5.
Nature ; 607(7918): 339-344, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35768511

RESUMEN

Extreme weather conditions associated with climate change affect many aspects of plant and animal life, including the response to infectious diseases. Production of salicylic acid (SA), a central plant defence hormone1-3, is particularly vulnerable to suppression by short periods of hot weather above the normal plant growth temperature range via an unknown mechanism4-7. Here we show that suppression of SA production in Arabidopsis thaliana at 28 °C is independent of PHYTOCHROME B8,9 (phyB) and EARLY FLOWERING 310 (ELF3), which regulate thermo-responsive plant growth and development. Instead, we found that formation of GUANYLATE BINDING PROTEIN-LIKE 3 (GBPL3) defence-activated biomolecular condensates11 (GDACs) was reduced at the higher growth temperature. The altered GDAC formation in vivo is linked to impaired recruitment of GBPL3 and SA-associated Mediator subunits to the promoters of CBP60g and SARD1, which encode master immune transcription factors. Unlike many other SA signalling components, including the SA receptor and biosynthetic genes, optimized CBP60g expression was sufficient to broadly restore SA production, basal immunity and effector-triggered immunity at the elevated growth temperature without significant growth trade-offs. CBP60g family transcription factors are widely conserved in plants12. These results have implications for safeguarding the plant immune system as well as understanding the concept of the plant-pathogen-environment disease triangle and the emergence of new disease epidemics in a warming climate.


Asunto(s)
Aclimatación , Proteínas de Arabidopsis , Arabidopsis , Ambiente , Calentamiento Global , Inmunidad de la Planta , Temperatura , Arabidopsis/crecimiento & desarrollo , Arabidopsis/inmunología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión a Calmodulina/genética , Regulación de la Expresión Génica de las Plantas , Calentamiento Global/estadística & datos numéricos , Interacciones Huésped-Patógeno , Fitocromo B , Enfermedades de las Plantas/genética , Inmunidad de la Planta/genética , Ácido Salicílico/metabolismo , Factores de Transcripción
6.
Front Plant Sci ; 13: 841688, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35360332

RESUMEN

Salicylic acid (SA) and N-hydroxypipecolic acid (NHP) are two central plant immune signals involved in both resistance at local sites of pathogen infection (basal resistance) and at distal uninfected sites after primary infection (systemic acquired resistance). Major discoveries and advances have led to deeper understanding of their biosynthesis and signaling during plant defense responses. In addition to their well-defined roles in immunity, recent research is emerging on their direct mechanistic impacts on plant growth and development. In this review, we will first provide an overview of how SA and NHP regulate local and systemic immune responses in plants. We will emphasize how these two signals are mutually potentiated and are convergent on multiple aspects-from biosynthesis to homeostasis, and from signaling to gene expression and phenotypic responses. We will then highlight how SA and NHP are emerging to be crucial regulators of the growth-defense balance, showcasing recent multi-faceted studies on their metabolism, receptor signaling and direct growth/development-related host targets. Overall, this article reflects current advances and provides future outlooks on SA/NHP biology and their functional significance as central signals for plant immunity and growth. Because global climate change will increasingly influence plant health and resilience, it is paramount to fundamentally understand how these two tightly linked plant signals are at the nexus of the growth-defense balance.

7.
Plant Physiol Biochem ; 168: 381-397, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34715564

RESUMEN

In plants, the reactive oxygen species (ROS) formed during normal conditions are essential in regulating several processes, like stomatal physiology, pathogen immunity and developmental signaling. However, biotic and abiotic stresses can cause ROS over-accumulation leading to oxidative stress. Therefore, a suitable equilibrium is vital for redox homeostasis in plants, and there have been major advances in this research arena. Salicylic acid (SA) is known as a chief regulator of ROS; however, the underlying mechanisms remain largely unexplored. SA plays an important role in establishing the hypersensitive response (HR) and systemic acquired resistance (SAR). This is underpinned by a robust and complex network of SA with Non-Expressor of Pathogenesis Related protein-1 (NPR1), ROS, calcium ions (Ca2+), nitric oxide (NO) and mitogen-activated protein kinase (MAPK) cascades. In this review, we summarize the recent advances in the regulation of ROS and antioxidant defense system signalling by SA at the physiological and molecular levels. Understanding the molecular mechanisms of how SA controls redox homeostasis would provide a fundamental framework to develop approaches that will improve plant growth and fitness, in order to meet the increasing global demand for food and bioenergy.


Asunto(s)
Inmunidad de la Planta , Ácido Salicílico , Oxidación-Reducción , Especies Reactivas de Oxígeno , Transducción de Señal
8.
Int J Mol Sci ; 22(17)2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34502565

RESUMEN

Abiotic stressors, such as drought, heavy metals, and high salinity, are causing huge crop losses worldwide. These abiotic stressors are expected to become more extreme, less predictable, and more widespread in the near future. With the rapidly growing human population and changing global climate conditions, it is critical to prevent global crop losses to meet the increasing demand for food and other crop products. The reactive gaseous signaling molecule nitric oxide (NO) is involved in numerous plant developmental processes as well as plant responses to various abiotic stresses through its interactions with various molecules. Together, these interactions lead to the homeostasis of reactive oxygen species (ROS), proline and glutathione biosynthesis, post-translational modifications such as S-nitrosylation, and modulation of gene and protein expression. Exogenous application of various NO donors positively mitigates the negative effects of various abiotic stressors. In view of the multidimensional role of this signaling molecule, research over the past decade has investigated its potential in alleviating the deleterious effects of various abiotic stressors, particularly in ROS homeostasis. In this review, we highlight the recent molecular and physiological advances that provide insights into the functional role of NO in mediating various abiotic stress responses in plants.


Asunto(s)
Homeostasis/fisiología , Óxido Nítrico/metabolismo , Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/fisiología , Estrés Fisiológico/fisiología , Sequías , Modelos Biológicos , Proteínas de Plantas/metabolismo , Salinidad
9.
J Exp Bot ; 2021 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-34081133

RESUMEN

Global climate change has broad-ranging impacts on the natural environment and human civilization. Increasing average temperatures along with more frequent heat waves collectively have negative effects on cultivated crops in agricultural sectors and wild species in natural ecosystems. These aberrantly hot temperatures, together with cold stress, represent major abiotic stresses to plants. Molecular and physiological responses to high and low temperatures are intricately linked to the regulation of important plant hormones. In this review, we shall highlight our current understanding of how changing temperatures regulate plant hormone pathways during immunity, stress responses and development. This article will present an overview of known temperature-sensitive or temperature-reinforced molecular hubs in hormone biosynthesis, homeostasis, signaling and downstream responses. These include recent advances on temperature regulation at the genomic, transcriptional, post-transcriptional and post-translational levels - directly linking some plant hormone pathways to known thermosensing mechanisms. Where applicable, diverse plant species and various temperature ranges will be presented, along with emerging principles and themes. It is anticipated that a grand unifying synthesis of current and future fundamental outlooks on how fluctuating temperatures regulate important plant hormone signaling pathways can be leveraged towards forward-thinking solutions to develop climate-smart crops amidst our dynamically changing world.

10.
Plants (Basel) ; 9(4)2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32244634

RESUMEN

The first layer of the plant immune system comprises plasma membrane-localized receptor proteins and intracellular receptors of the nucleotide-binding leucine-rich repeat protein superfamily. Together, these immune receptors act as a network of surveillance machines in recognizing extracellular and intracellular pathogen invasion-derived molecules, ranging from conserved structural epitopes to virulence-promoting effectors. Successful pathogen recognition leads to physiological and molecular changes in the host plants, which are critical for counteracting and defending against biotic attack. A breadth of significant insights and conceptual advances have been derived from decades of research in various model plant species regarding the structural complexity, functional diversity, and regulatory mechanisms of these plant immune receptors. In this article, we review the current state-of-the-art of how these host surveillance proteins function and how they are regulated. We will focus on the latest progress made in plant species belonging to the Solanaceae family, because of their tremendous importance as model organisms and agriculturally valuable crops.

11.
18.
Curr Biol ; 28(10): R619-R634, 2018 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-29787730

RESUMEN

Global environmental changes caused by natural and human activities have accelerated in the past 200 years. The increase in greenhouse gases is predicted to continue to raise global temperature and change water availability in the 21st century. In this Review, we explore the profound effect the environment has on plant diseases - a susceptible host will not be infected by a virulent pathogen if the environmental conditions are not conducive for disease. The change in CO2 concentrations, temperature, and water availability can have positive, neutral, or negative effects on disease development, as each disease may respond differently to these variations. However, the concept of disease optima could potentially apply to all pathosystems. Plant resistance pathways, including pattern-triggered immunity to effector-triggered immunity, RNA interference, and defense hormone networks, are all affected by environmental factors. On the pathogen side, virulence mechanisms, such as the production of toxins and virulence proteins, as well as pathogen reproduction and survival are influenced by temperature and humidity. For practical reasons, most laboratory investigations into plant-pathogen interactions at the molecular level focus on well-established pathosystems and use a few static environmental conditions that capture only a fraction of the dynamic plant-pathogen-environment interactions that occur in nature. There is great need for future research to increasingly use dynamic environmental conditions in order to fully understand the multidimensional nature of plant-pathogen interactions and produce disease-resistant crop plants that are resilient to climate change.


Asunto(s)
Cambio Climático , Interacciones Huésped-Patógeno , Enfermedades de las Plantas , Fenómenos Fisiológicos de las Plantas , Calor/efectos adversos , Humedad/efectos adversos , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/virología , Agua/análisis
19.
Nat Commun ; 8(1): 1808, 2017 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-29180698

RESUMEN

Environmental conditions profoundly affect plant disease development; however, the underlying molecular bases are not well understood. Here we show that elevated temperature significantly increases the susceptibility of Arabidopsis to Pseudomonas syringae pv. tomato (Pst) DC3000 independently of the phyB/PIF thermosensing pathway. Instead, elevated temperature promotes translocation of bacterial effector proteins into plant cells and causes a loss of ICS1-mediated salicylic acid (SA) biosynthesis. Global transcriptome analysis reveals a major temperature-sensitive node of SA signalling, impacting ~60% of benzothiadiazole (BTH)-regulated genes, including ICS1 and the canonical SA marker gene, PR1. Remarkably, BTH can effectively protect Arabidopsis against Pst DC3000 infection at elevated temperature despite the lack of ICS1 and PR1 expression. Our results highlight the broad impact of a major climate condition on the enigmatic molecular interplay between temperature, SA defence and function of a central bacterial virulence system in the context of a widely studied susceptible plant-pathogen interaction.


Asunto(s)
Arabidopsis/fisiología , Resistencia a la Enfermedad/fisiología , Calor , Enfermedades de las Plantas/microbiología , Pseudomonas syringae/patogenicidad , Ácido Abscísico/análisis , Ácido Abscísico/metabolismo , Arabidopsis/microbiología , Proteínas de Arabidopsis/metabolismo , Proteínas Bacterianas/metabolismo , Clima , Perfilación de la Expresión Génica , Interacciones Huésped-Patógeno , Transferasas Intramoleculares/metabolismo , Fitocromo B/metabolismo , Plantas Modificadas Genéticamente , Transporte de Proteínas , Pseudomonas syringae/metabolismo , Ácido Salicílico/metabolismo , Transducción de Señal/fisiología , Virulencia
20.
Plant Signal Behav ; 11(11): e1245254, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27831821

RESUMEN

Verticillium resistance is thought to be mediated by Ve1 protein, which presumably follows a "gene-for-gene" relationship with the V. dahliae Ave1 effector. Because in planta analyses of Ave1 have relied so far on transient expression of the gene in tobacco, this study investigated gene function using stably expressing 35S:Ave1 transgenic tomato. Transgenic Ave1 expression was shown to induce various defense genes including those coding for PR-1 (P6), PR-2 (ßbeta-1,3-glucanase) and peroxidases (anionic peroxidase 2, Cevi16 peroxidase). Since a Ve1- tomato cultivar served as germplasm, these results indicate that Ave1 induces these defense genes independently of Ve1.


Asunto(s)
Nicotiana/metabolismo , Nicotiana/microbiología , Enfermedades de las Plantas/microbiología , Verticillium/patogenicidad , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/microbiología , Nicotiana/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...